
Quantitative Analysis of Anemia

- Anemia (reductions in erythrocyte mass)
 - Hemorrhage
 - Hemolysis
 - Decreased production
- Two areas of quantitative analysis
 - Evaluation of red blood cell mass (PCV and HCT)
 - Red blood cell indices

Analysis of Red Cell Mass

- Hematocrit, RBC, PCV
 - Red cell mass in relation to plasma volume
 - PCV vs. HCT via automated cell count
 - HCT calculated based on RBC and MCV
 - HCT Affected by agglutination

Red Blood Cell Indicies

- MCV, MCH, MCHC
- Assist in the classification of anemia
 - Regenerative
 - Hemorrhage
 - Hemolysis
 - Nonregenerative
 - Decreased production
- Identification of specific diseases or pathological processes
Mean Cell Volume (MCV)

- An evaluation of the average size (volume) of a single RBC
- Can be measured directly (cell counters)
- Calculation: \(\frac{PCV}{RBC} \times 10 \)

Increased (larger than normal RBCs)
- Regenerative anemias (requires a week or more)
- FeLV
- Leukemia / preleukemia (Myeloproliferative disorders)

Decreased (smaller than normal RBCs)
- Iron deficiency (requires 1 or more months)
- Fragmentation of erythrocytes
- Portosystemic shunts
- Normal in Akita dogs

Mean Cell Hemoglobin Concentration (MCHC)

- The average Hb concentration
- Calculation: \(\frac{Hb}{PCV \ or \ HCT} \times 100 \)
- Decreases
 - Regenerative anemia
 - Iron deficiency anemia
- Increases (artifact)
 - Intravascular hemolysis (also in vitro)
 - Heinz body formation
 - Lipemia

Concurrent Evaluation of Indicies

- Necessary for interpretation
- MCV
 - Normocytic
 - Macrocytic
 - Microcytic
- MCHC
 - Normochromic
 - Hyperchromic
 - Hypochromic
Common Abnormalities in the Anemic Pet

- Normocytic, Normochromic
- Macrocytic, Hypochromic
- Microcytic, Hypochromic

Normocytic, Normochromic

- Normal MCV and MCHC
- Nonregenerative anemia
 - Decreased production problem
 - Anemia of Chronic Inflammation
 - Chronic Renal Failure
 - Bone marrow disease
 - Peracute hemorrhage or hemolysis
 - 3 to 5 days for peripheral response
 - May take a week or more to change indices
 - RDW (Red Cell Distribution width)
 - Blood film evaluation

The Red Cell Distribution Width

- A measurement of anisocytosis
 - Variability in red cell size
- The more variability in size (smaller or larger red cells) the higher the RDW
- Does not depend on numbers of cells to increase an average as does MCV
- More sensitive indicator of regeneration
- May also be increased with red cell fragmentation

Macrocytic, Hypochromic

- Elevated MCV, decreased MCHC
- Regenerative anemia
 - Hemolysis (most dramatic response)
 - Hemorrhage (less dramatic)
 - Temporal
 - Acutely nonregenerative
 - Regenerative
 - Poorly regenerative
Red Cell Indices and the Regenerative Anemia

- Study of over 4,000 dogs with anemia
 - (JAVMA, 138:1452-1458, 2011)
- 32.5% had regenerative anemia
 - Of those, only 11.8% had macrocytosis and hypochromasia (11% sensitivity; 98% specificity)
 - Polychromasia on blood smear alone, or with high RDW had 77% and 79% accuracy, respectively

Microcytic, Hypochromic

- Iron deficiency
- Chronic blood loss
- Diameter may be normal
- Cells are flat with reduced hemoglobin

Other Abnormalities of Indices

- Macrocytic, normochromic (Inc. MCV)
 - Leukemia / preleukemia
 - Dysplastic change (preneoplastic)
 - Neoplastic (leukemia)
 - FeLV infection
- Microcytic, normochromic (Dec. MCV)
 - Portosystemic shunt
 - Normal in Akita and Saluki dogs

The Platelet Count

- Low platelet counts should always be confirmed
 - Check tube and stopper for clots
 - Evaluate platelet numbers on blood smear (clumps)
- Beware of the thrombocytopenic cat!
- Very difficult to obtain accurate counts for cats
- Impedence counters vs. Laser technology
 - Size of platelets vs. RBC
 - Platelet clumps
Thrombocytosis

- Iron deficiency and chronic blood loss
- Nonregenerative (Central) IMHA
- Essential thrombocythemia (leukemia)
- Vincristine
- Hyperactive bone marrow (severe regenerative anemias)
- Cushing’s disease (increased glucocorticoids)
- Diabetes mellitus
- Splenectomy
- Inflammatory diseases

Thrombocytopenia

- Bone marrow disease: typically will involve other cell lines as well
 - Infectious, drug-induced, neoplastic
 - IMT directed against megakaryocytes
- Infectious agents: tick-borne diseases
- Numerous drugs (Immune mediated)
- Vascular disease / neoplasia (HSA / Thyroid)
- IMT alone
 - Most severe decreases
 - Leukopenia and red cell changes typically absent

Mean Platelet Volume (MPV)

- Machine-calculated measurement of the average size of platelets found in blood
 - Requires accurate identification
- Increased in regenerative responses to increased platelet demands
- Severe thrombocytopenia (<10,000 / µl) with increased MPV → IMT
 - In the absence of other cytopenias
 - Blood loss anemia being one exception

Thrombocytosis

- Response to inflammation
 - Low grade inflammatory responses may have high MPV (vascular disease, cancer)
 - May be associated with conditions promoting vascular thrombosis
 - Negative prognostic indicator for thrombosis in people
 - Cardiovascular and cerebrovascular diseases
 - High grade inflammatory responses may have low MPV
 - Resolve after appropriate therapy
The Leukogram

WBC (it’s not enough!)
- Analyzers that perform an accurate differential are superior
- Clinically significant changes with normal Leukogram
 - Increased numbers of immature neutrophils
 - Toxicity
 - Atypical leukocytes (reactive or neoplastic)
 - NRBCs
- Laser technology vs. impedance counters
- “Flagging” atypical cells (Reactive or Neoplastic?)

Normal Neutrophil Numbers

- Left shifts not often reported on the hemogram
- Major problem when numbers are normal
- Degenerative left shift
 - More immature neutrophils than mature in a patient with normal or low neutrophil numbers
 - Guarded prognostic factor especially in cats!
 - Up to 50% mortality rate due to death or euthanasia (Burton et al. 2013. JVIM 27(6) 1517-1522)

Nucleated Red Blood Cells

- Regenerative anemia if polychromasia is present (reticulocytosis)
- Bone marrow disease or damage in patients without anemia or polychromasia
 - Lead poisoning
 - Bone marrow neoplasia (leukemia)
 - Bone marrow damage (septicemia)
- Can alter the leukogram
 - Mistaken for lymphocytes (lymphocytosis)
 - Falsely increased WBC

Correction for NRBCs

- 100/100 + NRBCs X WBC = corrected WBC
- Must perform a differential and record the # NRBCs per 100 WBCs
- Significant when there are >5-7 NRBCs / 100 WBCs.
Microscopic Examination of a Blood Film (When?)

- Any quantitative abnormalities
 - RBC
 - WBC
 - Platelets
- Evaluation of sick patients
- Quality assurance for hemogram

Slide Preparation

- Small drop of blood
- Push Smear
- Quick drying to reduce artifacts
- Staining
Staining the Blood Smear

- Three-step staining set
 - Diff Quik®
 - Fix 2 min. or as long as you like
 - Red – 1 min.
 - Blue – 45 sec